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To start 

• Be nice… : “No one loves the messenger who brings bad 

news” 

• About the test systems: 

- The specifications used in this work have been proposed by B4-57. 

- The specifications used to define the test system are preliminary and 
will be reviewed by the B4 WGs. 

  

• Exercise judgment 

- Comparisons of highly detailed and complex models in three 
completely different software environments are difficult 

- A ‘one-to-one’ agreement should not be expected 

- All models can be improved, this study aims to show where 
improvement is needed 

- We make no statements of what is right or wrong, we just 
present the results 

- Even with the limitations of each of the current models, they are 
actually quite detailed and of high quality.  
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Outline 

• Brief description of the models 
- Opal-RT (Matlab/Simulink + SimPowerSystems and eMegaSim from 

Opal-RT) 

- PSCAD from Manitoba HVDC Research Center 

- EMTP-RV from PowerSys and EMTP DCG 

 

• Models differences 

 

• Simulation Studies 

- Description and aim of the simulation studies 

- Selected results (all results available for scrutiny) 

 

• General simulation challenges when using the 
benchmark models 

 

• Recommendations and Further Work 



Brief Description of the Models –  
Cigre DC Grid Test System 

Types of Conv. Controls 

Droop Cntrl 

Droop Cntrl P Cntrl 

VF Cntrl 

Not Specified 
DC-DC Conv. 

P Cntrl 

Droop Cntrl 



Test System in Opal-RT 
(Layout from Hypersim) 

No DC/DC converter 

Embedded VBE 
model means that 
the detail MMC cell 
model is 
implemented but 
without the cell 
capacitor balancing 
control (see the 
OPAL-RT 
presentation) 



Test System in Opal-RT 
(Top level model) 



Subsystem of A1 

MMC Converter 

Subsystem A0 to A1 

Test System in Opal-RT 
(Subsystems) 



Test System in PSCAD 

 



Test System in PSCAD 

Converter A1 Converter controller 

VSC control MMC PWM 



Test System in EMTP-RV 
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CIGRE DC Grid test system - August 2012

Notes :

Every converters are configured as bipoles with earth return

Mixed configurations (monopole and bipole) can be used

Converter models : Detailed Equivalent - Type5 - 21 levels

Average value model is used for DC-DC converter B5

 

 

Converters Controls :

A1, B1, B2, B3 : P/Vdc droop control and Q control on AC side

C1, C2, D1, F1 : P control and Q control on AC side

E1 : V/f control

Double click to select the test case

1. Steady state solution 

2. Steady State Power Through Converters 

3. Fault on AC grid 

3.1. Line opening 

3.1.1. Trip and reclose of Line 1: A0_A1_2 – A1_A0_2 

3.1.2. Trip and reclose of Line 2: B0_B3 – B3_B0 

3.1.3. Trip and reclose of Line 3: C2_C1 

3.2. Balanced 3 phase faults: 

3.2.1. Fault on Line 1: A0_A1_2 – A1_A0_2 

3.2.2. Fault on Line 2: B0_B3 – B3_B0 

3.2.3. Fault on Line 3: C2_C1 

3.3. Unbalanced 3 phase faults: 

3.3.1. Fault on Line 1: A0_A1_2 – A1_A0_2 

3.3.2. Fault on Line 2: B0_B3 – B3_B0 

3.3.3. Fault on Line 3: C2_C1 

4. Response due to reference changes:  

4.1. Change in Pref at VSC_A1 (Droop Control): from 0.73 to 0.63 

4.2. Change in Pref at VSC_B2 (Droop Control): form -1 to -0.9 

4.3. Change in Pref at VSC_C1 (P control): from 1 to 0.9 

4.4. Change in Pref at VSC_F1 (P control): from 1 to 0.9 

4.5. Change in Pref at VSC_E1 (VF control): from -1 to -0.9  

4.6. Change in Vref at B2 (Vf control): from 1 to 1.02 

5. DC Faults 

5.1. Trip and reclose of Line 1: A1_B1_1 – B1_A1_1 

5.2. Trip and reclose of Line 2: B5_B1 – B1_B5 

5.3. Trip and reclose of Line 3: B2_B3 – B3_B2 

5.4. Trip and reclose of Line 4: A1_C2 – C2_A1 
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Test System in EMTP-RV 
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Main Model Differences 

• Opal-RT Model (Matlab/Simulink/SPS + Opal-RT Libraries) 
- Developed by Opal-RT (Luc-Angre Gregoire) 

- Embedded VBE for VSCs (Type 5 – see Opal-RT presentation) 

- No. of sub-modules per valve: two type of converters, 400 (for on-shore) and 20 (for offshore grid)  

- DC-DC Converter Model not included (B5 Converter) 

- 11 cores running in real-time with the eMegaSim simulator. 

• PSCAD Model 
- Developed by Manitoba HVDC Research Center. 

- Detailed (equivalent Norton) models of VSC (Type 4 – all gate signals). 

- No. of sub-modules per valve: Two type of converters, one is 38 (MMC PWM) and the other is 98 (MMC)  

- DC-DC Converter Model not included (B5 Converter) 

• EMTP-RV Model 
- Developed by RTE (Sebastien Dennetiere) 

- Detailed (equivalent Norton) models of VSCs (Type 4 – all gate signals).  

- No. of sub-modules per valve: 21  

- Type 2 (DM) also available. 

- Simplified DC-DC Converter included 

- Documented modification from specification: Parameters are modified in the AC side B0 and B1 line length 
is 200 km, 2 circuit lines (instead of 1 line of 400 km) 

• Type 4 Definition 
- Reduction in each arm to limit the number of electrical nodes (based on the integration method – 1 arm, 1 

equivalent) 



Simulation Studies: 
Steady State and Time Domain 

• Simulation goals: 

- Determine the steady state performance of the test systems 

- Determine the dynamic performance of the test systems and 
terminals due to small perturbations, switching events (at DC), and 
faults (at AC) 

• Simulation studies proposed (22): 

- Steady State Analysis (3) 

- Faults on AC Systems: 

• Line opening (3) 

• Balanced 3-phase faults (3) 

• Unbalanced 3-phase faults (3) 

- Response due to control reference changes 

• Perturbation in Pref at all controllers (5), Vref (1) 

- DC Faults: DC Line switching 

• DC line openings (4) 

• Studies carried out: Opal-RT (21), PSCAD (16), EMTP-RV (22)  

• Count: 59 simulations – 3 steady state, 56 time domain 

 

 



Model/User Limitations:  
Simulations that could not be carried out 

• Opal-RT  

- Change in Vref at DCDC_B5 (Simulation 4) Response due to 
reference changes 

•PSCAD 

- Change in Pref at VSC_E1 (Simulation 4) Response due to 
reference changes 

• Model needs to be modified by adding a load at E1. 

• We ran out of time to do this. 

- Change in Vref at DCDC_B5 (Simulation 4) Response due to 
reference changes 

• Converter B5 is an empty block 

- All DC Faults 

• Could not figure out how to disable some internal breakers in 
the converters. 

• EMTP-RV 

- All simulations were be executed. 

 

 

 



Requirements to 
run the models 

•  Opal-RT 
- OPAL-RT real-time simulator OR license to run the 

compiled model in the PC (localhost license) 

- RT-Lab version 10.4.4.130, MATLAB Simulink 2011b 
(32-bit). 

- MMC libraries from Opal-RT 

- 11 processors  

(eMegaSim simulator at KTH SmarTS Lab has 24). 

•   • PSCAD 
- Compiler: PSCAD requires a FORTRAN compiler. In these simulation we use Intel® Visual 

Fortran Composer XE 2011 (v12) compiler (trial license). 

- Version of the software: PSCAD X4 (4.5.0.0) Professional edition (trial license). 

- Third party tools: If having the error of “WSock32.lib file missing”, the Windows platform 
headers and libraries need to be installed by the users. 

- A VSC_MMC_lib file comes together with the model. 

•  EMTP-RV 
- EMTP-RV V2.4 

- MMC Toolbox 

• FOR ALL OF THE ABOVE: PATIENCE!!! (and money…) 

 



Steady State Analysis 

• We consider the “harmonic steady state”, not power flow 
solution. 

• Procedure: -run the simulation until it reaches a “steady state” 

• Opal-RT and PSCAD models offer a “meter”.  

• For EMTP-RV: 
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Steady State Power Through Converters 

Steady State Power through 
Converters 
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Comparison of Desired Flows:  
Design spec. with actual power through converters 
(max. value between input and output) 

• The Opal-RT model matches the specification with no differences. 
• There is a very reasonable agreement between the design specification EMTP-

RV. Differences are likely due to tuning of model parameters. 
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Steady State Solutions  
(Harmonic Steady State) – AC and DC Flows 

Steady State Solns. 

AC Flows 

DC Flows 
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Results 
Absolute Values Shown 

Line no. From Bus To Bus 
Design 
Spec. 

1 A1ac A0ac 600,00 

2 A1dc B1dc 1500,00 

3 A1dc B4dc 800,00 

4 C1dc A1dc 600,00 

5 C2dc A1dc 600,00 

6 B0ac B1ac 400,00 

7 B0ac B2ac 400,00 

8 B0ac B3ac 400,00 

9 B1ac B3ac 400,00 

10 B4dc B1dc 300,00 

11 B1dc E1dc 500,00 

12 B2ac B3ac 200,00 

13 B3dc B2dc 200,00 

14 B5dc B2dc 1100,00 

15 B6dc B3dc 700,00 

16 F1dc B6dc 700,00 

17 C1ac C2ac 100,00 

18 C2dc D1dc 200,00 

19 D1dc E1dc 800,00 

20 E1dc F1dc 200,00 

Directly 
Connected to 

Slack Bus 

600
577
279,80
609

1500
1194,90
340,60
1127,20

800
199,61
320,50
530,40

600
4,40
277,80
595,90

600
5,90
158,50
250,40

400
- 434,10
13,70
622,70

400
1017
422,90
486,20

400
772
377,60
2436

400
741,30
688,80
834,60

300
- 198,34
120,30
1251,00 500

104,38
321,00
316,60

200
58,64
176,50
34,35

200
836,80
153,29
1886

1100
0
433
720,20

700
841,47
217,60
2301

700
887,98
245,40
2301

100
- 10,47
137,28
149

200
- 64,27
4,60
151,20

800
586,83
524
836

200
432,12
138
1805

Flow from B2 
to F1 



• In some of the AC measurement, the output was filtered after power 
computation. For the DC case, only the instantaneous power without 
filtering was used. 

 

 

 

 

 

 

 

Source of errors in power 
measurements in Opal-RT model 

Also, the power in each AC line 
was deducted from the 
measurement of each converter. 
There is a lot of room for error in 
doing this way.  Next version of 
the model should include more 
measurement to avoid such error. 
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Faults on AC Systems 

AC Faults 

Line 1 

Line 2 

Line 3 



Faults on AC Systems 

AC Faults 

Line 1 

Line 2 

Line 3 

All changes applied at t=1 sec after harmonic steady state 
soln. 
 
 
Balanced (3 phase) [or unbalanced] fault is applied at left-
hand (or upper) side bus of the line.  
 
Ideal AC breakers are placed on each side of the line.  
 
 
The line is opened after 2 cycles (0.04sec), after this to 
cycles the fault is cleared by opening the breakers on left 
hand side and right hand side simultaneously, and closing 
them simultaneously after 2 cycles.  



Balanced Fault on Line 3:  
C1_C2 
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Response Due to Reference Changes 

Response to Ref. 
Changes 

∆Pref=-0.1 
Droop Cntrl 

∆Pref=-0.1 
Droop Cntrl 

∆Pref=-0.1 
P Cntrl 

∆Pref=-0.1 
P Cntrl 

∆Pref=+0.1 
VF Cntrl 

∆Vref=+0.02 
Const. V 



Faults on DC Grid 

DC Faults 

Line 1 

Line 2 

Line 3 

Line 4 



General Simulation Challenges 

• Opal-RT 
- Separate subsystems in order to run in real-time 

- Need a model compiler for the specific architecture of the system 
and software configuration. 

- Model modifications during real-time simuation 

• Con.: No possibilities of modifying the circuit model for real-
time simulation, but ok for off-line (although this takes out the 
advantage of having an RT simulator) 

• Pros.:  
– Control parameters can be modified while real-time simulation is running. 

– RT simulator can be used in “Simulation Accelerator” mode when no I/O is used 
(faster than real-time) 

- Capacitor Balancing: 

• Detailed MMC cell model was used. 

• However, the DC voltage of each capacitor is adjusted to the 
average value of the sum of the cell capacitor voltage. 

• The capacitor voltage balancing control system is therefor not 
implemented (but available). 

 



General Simulation Challenges 

 

• PSCAD 

- Errors that are difficult to figure out:  

• Example1:Component ‘***’ does not have a corresponding 
definition. 

• Solution: loading the library has to do before loading the 
model. 

• Example2: ***No rule to make target ‘***.mak’. Stop 

• Solution: install suitable compiler (GNU Fortran compiler is 
not suitable) 



• PSCAD 

- Aspects not documented that make it difficult to use the 
model 

• In link tab of project setting, the user must manually add these 
sub-directories to the directory specified by the User Library Path 
input in the Workspace dialog. In this simulation, we need to 
choose ‘if12   (Intel Visual Fortran compiler versions 12)’. 

• De-blocking the converter control for several seconds at the 
beginning of the simulation, which is not indicated when providing 
this model. 

 

 

 

 

 

• Some newly developed components do not have help information. 
For example, the DC breaker. 

 



  
General Performance Observed 
(ONE Specific Case) 

•  Opal-RT (50 µsec time step) 

A. Approximately 1 sec 

B. Simulation time: Real time. (1 sec. = 1 sec.) 

 

•PSCAD (20 µsec time step) 

A. Approximately 5 sec  

B. Simulation time: about 1 hr for a 15s simulation 

(Initialization Work Around - if system is left unchanged: start from a 
snapshot (snapshot for initialization) 

 

•  EMTP-RV (40 µsec time step) 

A. Approximately 0.5 sec. 

B. Simulation time: 258.625 sec for 2 second simulation. 

A.  Simulation “t” to reach a steady state  

B. Time effort to carry out one simulation 

 



Recommendations and Further Work 

• The three models simulated are very complex and detailed, and will 
certainly be useful for DC Grid studies. 

• We make the following recommendations for improvements on the 
current models! 

• Documentation: 

- Currently the EMTP-RV and SPS models are designed only for the 
scenarios presented. 

- Documentation on the models (details) are needed for preparing other 
studies. 

• Model Harmonization: 

- The DC Grid benchmark models need to: 

• Be harmonized in terms of steady state solution 

• Controller implementation should be identical 

- For large DC Grid studies, the focus is not on converter performance, and 
detailed representation of the VSCs might be unnecessary 

• The use of a common average value model for the VSC is recommended, 
but this must be validated with detailed models 

• (Detailed models are only necessary for internal protection and 
performance analysis) 



Recommendations and Further Work 

•Validation: 

- Component validation 

• Validation across different simulation environments should 
start at the component level for comparison studies to be 
meaningful: 
– Controller validation should be first (check controller response to 

isolated inputs – compare outputs) 

– VSC validation (for AVM), DC Line models and breaker models 

– Independent validation of AC grid portions 

• Component level validation with “real” measurements 
would be AWESOME! 
– Some suppliers and R&D centers have comparisons with actual 

hardware or analog set ups, but it is not public. 

- Point-to-point DC Link: 

• Validation is recommended to establish the core differences 
of a simple DC Grid operation under different control modes 
in the three different environments. 



Recommendations  
Looking into the Future: Avoid Modeling Ambiguity 

• Modeling and Simulation without Ambiguity! 

• The efforts in developing these benchmark models is of great value for DC 
Grid development. 

 

• However, DC Grid development will be hindered due to a lack of ability:  
- To share (validated) models across different simulation environments. 

- Which in turns requires the re-implementation of models in different tolls (very costly!).  

- In this case models need to be validated. 

 

• This study has shown that there is a clear need for unambiguous model 
exchange 
- Model exchange not referring only to parameter data 

- Actual model implementations differ: “what’s inside the box?” is not transparent to the user 

- Challenge for users without access to all software (economically prohibitive) 

 

• This problem has existed since about 40 years for conventional AC/DC 
system design! (J. Belanger) 

- DC Grid development should strive to tackle this attitude for common benefit. 



Recommendations – Looking into the 
Future: Avoid Modeling Ambiguity 

• Possible solutions to ambiguity 

• Modelica-based models: 

- Modelica is an OOP modeling language for complex systems 

- Modelica models allow the specification of both the model equations and 
parameters 

- A DC Grid model could be entirely defined, without ambiguity, and shared. 

- Files could be packaged so that the model inside remains “closed”. 

 

- Caveat: Each simulation environment needs to translate from Modelica to 
their internal definition (which requires validation). Mapping to GUI, etc… 

 

- However: 

- The use of Modelica language for very large AC/DC networks still need to 
be demonstrated. FP7 Pegase project had very promising results for 
moderate size networks. 

- Usually, network solution used specialized circuit solvers (nodal …) with 
system topologies and component parameters.  Are topology-based 
specialized solvers available in Modelica? 



Proof of concept:  
Sharing Modelica Power System Models in two 
different simulation environments 

Simulation results in Scilab/Xcos and Dymola, respectively. They are 
absolutely the same. 
Courtesy of Wei Li (KTH), Angela Chie and Patrik Panciatici (RTE) 
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Recommendations – Looking into the 
Future: Avoid Modeling Ambiguity 

• Possible solutions to ambiguity (cont’d) 

• FMI 

- Automotive industry has used the Flexible Mock-up Interface approach. Models 
are exported in a FMU (Functional Mock-up Unit). 

- FMUs can be imported in another environment and executed. 

- FMUs from different sources can cooperate at runtime in a co-simulation 
environment. FMI defines the interfaces for this to happen. 

- Caveat: co-simulation environment is needed. Would be difficult to do real-time 
simulation (in the case of Opal-RT Models).  

 

- OPAL-RT already support co-simulation for loosely coupled systems.   

- But  

• Co-Simulation is very difficult for tightly coupled system such as AC/DC 
circuit due to delays since simultaneous solution is required.  OPAL-RT has 
developed SSN for this purpose. 

• The use of FMI for electrical network simulation still need to me demonstrated 
and it may happen that FMI is a good approach for loosely coupled simulation 
only (control systems and plant models with very different time constants). 



Recommendations – Looking into the 
Future: Avoid Modeling Ambiguity 

•Possible solutions to ambiguity (Cont’d) 

•CIM-for-EMT 

- Would be similar to the Modelica approach, but it would be 
more difficult to share exact equations (or package them so 
that they are “closed”). 

- As of now, CIM only defines the topology and system 
parameters, not the model equations 



Thank you! luigiv@kth.se 

http://www.vanfretti.com 
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